Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis
نویسندگان
چکیده
Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.
منابع مشابه
P157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملChanging Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis
Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...
متن کاملExpression of Prostate-Specific Membrane Antigen (PSMA) in Brain Glioma and its Correlation with Tumor Grade
Background & Objective Angiogenesis is an essential component of tumor growth. Expression of PSMA on the neo-vasculature of many solid tumors, including glioblastoma multi-form, has been determined. The pattern of expression suggests that PSMA may play a functional role in angiogenesis. Methods: expression of PSMA in dif...
متن کاملAntenatal Dexamethasone For Women at Risk af Preterm Birth and Intraventricular Haemorrhage: What is the Truth?
Administration of antenatal corticosteroids to pregnant women with imminent delivery of a newborn at 24 to 34 weeks of gestation represents one of the most important advances in perinatal medicine in the past 25 years1,2. A single course of antenatal steroid has been associated with a decrease in acute neonatal systemic morbidity and mortality after preterm birth reducing the risk of respirator...
متن کاملP112: Tumour Associated Macrophages and Vasculogenic Mimicry: A New Insight in Glioblastoma Treatment
Glioblastoma is one of the most common brain tumors in adults with poor prognosis, aggressiveness, and treatment resistance. Vasculogenic mimicry (VM) consists of generating vascular-like channels by tumor cells, independent of endothelial angiogenesis. Studies showed in glioblastoma, the proportion of VM to all vascular channels is associated with poor prognosis and higher invasiveness levels....
متن کامل